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1 Introduction

There is something odd and rarely commented upon
that is at the core of some, if not all known analytical
solutions of the heat equation

C
∂2u

∂x2
= cρ

∂u

∂τ
, (1)

or
uxx = ut, (2)

whereC is known as the thermal conductivity,c the
specific heat,ρ the density,u is temperature that de-
pends on positionx and timeτ , with t = kτ and
k = C/(cρ), called the thermal diffusivity. The un-
settling matter is that the solutions suggest that when
t = 0 we should always haveu = 0, which we find
impractical. Impractical in that one then cannot have
arbitrary initial conditions likeu(t = 0, x0) = u0
without u0 = 0. Numerical techniques, on the other
hand, do not have this problem, implying that there is
some unknown analytical solution waiting to be un-
earthed.

This we address using Lie’s symmetry group the-
oretical method, a technique he introduced centuries
ago through the now famous paper [1]. It is worth
noting that this technique has been applied before on
this equation, and that two very distinct solutions have
consistently resulted. They are in the linear combina-
tion

u =
1√
t
e−

x
2

4t

(

C1 + C2
x

t

)

, (3)

and can be found in Bluman’s work and the work he
did with others, including with Kumei [2]. The same

results are also contained in the work with Cole, com-
municated by Keller [3], also with Anco [4]. The pa-
rametern contained in the result Ibragimov [5] got

u =
C0√
tn
e−

x
2

4t , (4)

generates a broader perspective to one of Bluman’s
solutions. Olsen [6], used a very clever trick to get

u =
x

2
√
t
e

−x
2

4t . (5)

Clearly, this result together with (3) and (4) are obvi-
ously in the family of solutions of the form

u = f(t, x)e−
x
2

4t . (6)

The factor exp(−x2/(4t)) guarantees thatu = 0
whent = 0.

Other contributions in the field are by Kallianpur,
Karandikar [7], Kwok [7], Hui [8], Longstaff [9] and
Platen [10]. There are also studies by Naicker, An-
driopoulos and Leach [11], Pooe, Mahomed and Soh
[12], Sinkala, Leach and OHara [13], and Gazizov and
Ibragimov [14].

In this contribution, we determine new symme-
tries for (2), leading to new invariant solutions. This
requires introducing a new infinitesimal parameterω.
Infinitesimal parameters are not new to Symmetry
analysis. What we do differently is that the param-
eter is not introduced into the symmetry generator as
is customary, but outside of it. To realise this, we in-
voke Euler’s formulas for solving second order ordi-
nary differential equations, discussed in Appendix A.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.4 Volume 14, 2020

ISSN: 2074-1278 18



We show that in addition to the family of solutions
espoused in (6), there is a whole new family mapped
by a paired couple presented in (126). And also sug-
gest (129) as an alternative to averting the arbitrary
zero inu whent = 0.

2 Solution of the determining equa-
tion

In order to generate point symmetries for equation (2),
we first consider a change of variables fromt, x andu
to t∗, x∗ andu∗ involving an infinitesimal parameter
ǫ. A Taylor’s series expansion inǫ nearǫ = 0 yields

t∗ ≈ t+ ǫT (t, x, u)
x∗ ≈ x+ ǫξ(t, x, u)
u∗ ≈ u+ ǫζt, x, u)











(7)

where
∂t∗

∂ǫ |ǫ=0 = T (t, x, u)
∂x∗

∂ǫ |ǫ=0 = ξ(t, x, u)
∂u∗

∂ǫ |ǫ=0 = ζt, x, u)











. (8)

The tangent vector field (8) is associated with an op-
erator

X = T
∂

∂t
+ ξ

∂

∂x
+ ζ

∂

∂u
, (9)

called a symmetry generator. This in turn leads to the
invariance condition

X [2] (uxx − ut) |{uxx=ut} = 0, (10)

whereX [2] is the second prolongation ofX. It is ob-
tained from the formulas:

X [2] = X + ζ
(1)
t

∂
∂ut

+ ζ
(1)
x

∂
∂ux

+ ζ
(2)
tt

∂
∂utt

+ ζ
(2)
tx

∂
∂utx

+ ζ
(2)
xx

∂
∂uxx

,
(11)

where

ζ
(1)
t = ∂g

∂t + u∂f
∂t +

[

f − ∂T
∂t

]

ut − ∂ξ
∂xux,

(12)
ζ
(1)
x = ∂g

∂x + u∂f
∂x +

[

f − ∂ξ
∂x

]

ux − ∂T
∂t ut,

(13)

ζ
(2)
tt = ∂2g

∂t2
+ u∂2f

∂t2
+
[

2∂f
∂t − ∂2T

∂t2

]

ut − ∂2ξ
∂t2

ux

+
[

f − 2∂T
∂t

]

utt − 2∂ξ
∂tutx,

(14)

ζ
(2)
xx = ∂2g

∂x2 + u∂2f
∂x2 +

[

2∂f
∂x − ∂2ξ

∂x2

]

ux − ∂2T
∂x2 ut

+
[

f − 2∂T
∂x

]

uxx − 2∂T
∂x utx,

(15)

and

ζ
(2)
tx = ∂2g

∂t∂x + u ∂2f
∂t∂x +

[

2∂f
∂x − ∂2T

∂t∂x

]

ut

+
[

2∂f
∂t −

∂2ξ
∂t∂x

]

ux −
[

f − ∂T
∂t − ∂ξ

∂x

]

utx

−∂T
∂xutt −

∂ξ
∂tuxx.

(16)
It is to be understood here that the simplification
ζ(t, x, u) = uf(t, x) + g(t, x) is adopted from the
calculations that led to the old symmetries:

Y1 = ∂
∂x ,

Y2 = ∂
∂t ,

Y3 = x ∂
∂x + 2t ∂

∂t ,

Y4 = xt ∂
∂x + t2 ∂

∂t +
(

t
2 + x2

u

)

u ∂
∂u ,

Y5 = t ∂
∂x − xu

2
∂
∂u ,

Y6 = u ∂
∂u ,

Y∞ = g(t, x) ∂
∂u .



















































(17)

These are mentioned here to ease comparison with our
own, which are at the end of this section.

The invariance condition (10) then leads to the
equation
∂2g
∂x2 + u∂2f

∂x2 +
[

2∂f
∂x − ∂2ξ

∂x2

]

ux − ∂2T
∂x2 ut +

[

f − 2∂T
∂x

]

ut−2∂T
∂xutx−

∂g
∂t −u∂f

∂t −
[

f − ∂T
∂t

]

ut+
∂ξ
∂xux = 0,
called determining equation, from which follows the
monomials

utx : Tx = 0
ut : Tt − 2ξx = 0
ux : 2fx − ξxx + ξt = 0
u : fxx − ft = 0
1 : gxx − gt = 0



























(18)

called the defining equations.
To begin solving these, we note that the first defin-

ing equationTx = 0, suggests thatT should not de-
pend onx. The implication is that we would end with
less number of symmetries if we continue this way.
Fortunately, we now have formula (135) to remedy
this.

We use the formula to generate some dependence
on x for T . That is,T depends on botht andx near
ǫ = 0, but not atǫ = 0. Differentiating this defining
equation with respect tot, gives

Ttx = 0. (19)

This can then be used to simplify the second defining
equation. When the latter is differentiated with respect
to x, we get

Txt − 2ξxx = 0. (20)
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Because the functionT is analytic everywhere, Eu-
ler’s mixed derivatives theorem holds, meaningTxt =
Ttx. This then reduces (20) into

ξxx = 0, (21)

which then integrates into

ξ = a+ xb, (22)

wherea = a(t) andb = b(t). This expression is sim-
ilar to the one appearing with Euler’s formulas in the
system (131). The discussion there was that the mid-
dle expression cannot be transformed into the other
two, then we had to introduce (135) to make it possi-
ble. That expression becomes handy here, because we
can now express (22) in the form

ξ =
aφ cos(ωx/i) + b sin(ωx/i)

ω/i
, (23)

whereφ = sin(ω/i). It is clear that (22) reduces to
(21) whenω → 0. The second defining equation,Tt−
2ξx = 0, then leads to

T =
−2ȧφ sin(ωx/i) + 2ḃ cos(ωx/i)

ω
+A0, (24)

whereA0 is a constant. ThusT now appears to also
depend onx, but we know this is subject toω = 0.
Substitutingξ andT from equations (23) and (24) into
the third defining equation,2fx = ηxx − ηt, leads to

2fx = − ȧφ

i

w

i
cos(ωx/i)− ḃ

ω

i
sin(ωx/i)

−ä
φ

ω
cos(ωx/i) − ib̈

ω
sin(ωx/i), (25)

Integrating this with respect tox gives

f = − (ȧ+ ä)
φ

2
sin(ωx/i)

+
(

ḃ− b̈
) 1

2
cos(ωx/i) +

B0

2
, (26)

whereB0 is a constant. We now substitute this into
the fourth defining equation to establish the functions
a andb. First we differentiate (26) once with respect
to t:

ft = −
(

ä+ a(3)
) φ

2
sin(ωx/i)

+
(

b̈− b(3)
) 1

2
cos(ωx/i), (27)

then twice with respect tox:

fxx = − (ȧ+ ä)
φ

2
ω2sin(ωx/i)

+
(

ḃ− b̈
) ω2

2
cos(ωx/i). (28)

The substitution leads to

(ȧ+ ä)ω2 = ä+ a(3), (29)

and
(

ḃ− b̈
)

ω2 = b̈− b(3). (30)

To solve (29), we note it can be written in the form

ä+ a(3)

ȧ+ ä
= ω2. (31)

That is,
ȧ+ ä = C0e

ω2t. (32)

Subsequently,

a =
C0

ω2

1

ω2 + 1
eω

2t + C1 + C2e
−t. (33)

Similarly, solving equation (30) yields

b =
D0

ω2

1

ω2 − 1
eω

2t +D1 +D2e
t, (34)

for some constantsC0, C1, C2,D0,D1 andD2.

2.1 Infinitesimals

The linearly independent solutions of the defining
equations (18) lead to the infinitesimals

T = −2φ

(

C0

ω4(ω2 + 1)
eω

2t
)

sin(ωx/i)

−2φ
(

C1t− C2e
−t
)

sin(ωx/i)

+2

(

D0

ω4(ω2 − 1)
eω

2t
)

cos(ωx/i)

+2
(

D1t+D2e
t
)

cos(ωx/i) +A0, (35)

ξ =
iφ

ω

(

C0

ω2

1

ω2 + 1
eω

2t
)

cos(ωx/i)

+
iφ

ω

(

C1 + C2e
−t
)

cos(ωx/i)

+
i

ω

(

D0

ω2

1

ω2 − 1
eω

2t
)

sin(ωx/i)

+
i

ω

(

D1 +D2e
t
)

sin(ωx/i) (36)

and

f = −C0
φeω

2t

2
sin(ωx/i)

−D0
eω

2t

2
cos(ωx/i) +

B0

2
. (37)
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2.2 The symmetries

According to (9), the infinitesimals: (35), (36)
and (37), lead to the generators

X1 =
2eω

2t

ω4(ω2 − 1)
cos(ωx/i)

∂

∂t

+
ieω

2t

ω3(ω2 − 1)
sin(ωx/i)

∂

∂x

− eω
2t

2
cos(ωx/i)u

∂

∂u
, (38)

X2 = − 2φeω
2t

ω4(ω2 + 1)
sin(ωx/i)

∂

∂t

+
iφeω

2t

ω3(ω2 + 1)
cos(ωx/i)

∂

∂x

− φeω
2t

2
sin(ωx/i)u

∂

∂u
, (39)

X3 = −2φ t sin(ωx/i)
∂

∂t

+
iφ

ω
cos(ωx/i)

∂

∂x
, (40)

X4 = 2 t cos(ωx/i)
∂

∂t

+
i

ω
sin(ωx/i)

∂

∂x
, (41)

X5 = 2φ e−t sin(ωx/i)
∂

∂t

+
iφ

ω
e−t cos(ωx/i)

∂

∂x
, (42)

X6 = 2 et cos(ωx/i)
∂

∂t

+
i

ω
et sin(ωx/i)

∂

∂x
, (43)

X7 =
∂

∂t
, (44)

X8 = u
∂

∂u
. (45)

The last defining equation leads to an infinite symme-
try generator.

X∞ = g(t, x)
∂

∂u
. (46)

3 Construction of invariant solutions
for (2)

The symmetriesX7,X8 and X∞ are not different
from Y2, Y6 and Y∞ obtained by Bluman and oth-
ers, as such unlikely to lead to anything not already
known. We limit our construction of invariant solu-
tions toX1 andX2, as they appear to be broader and
more encompassing thanX3,X4,X5, andX6. What
is certain is thatX3 and X4 are automatically ad-
dressed.

3.1 Invariant solutions through the symme-
try X1

The characteristic equations that arise from the sym-
metryX1:

ω4(ω2 − 1)e−ω2tdt

2 cos(ωx/i)
=

iω3(ω2 − 1)e−ω2tdx

sin(ωx/i)

=
2e−ω2tdu

cos(ωx/i)u
, (47)

lead to

ω4(ω2 − 1)e−ω2tdt

cos(ωx/i)
= 2

iω3(ω2 − 1)e−ω2tdx

sin(ωx/i)
, (48)

and

ω4(ω2 − 1)e−ω2tdt

2 cos(ωx/i)
=

2e−ω2tdu

cos(ωx/i)u
. (49)

Equation (48) becomes

ω2dt = −2
(ω/i) cos(ωx/i)dx

sin(ωx/i)
, (50)

so that

λ = −ω2t− 2 ln | sin(ωx/i)|. (51)

Hence,

η = e
ω
2

2
t | sin(ωx/i)| (52)

whereη = exp(−λ/2).
Equation (49) becomes

ω4(ω2 − 1)dt

4
=

du

u
, (53)

so that the invariant solution has the form

u = e(ω
4(ω2−1))t/4φ(η). (54)
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This means

ut =
ω4(ω2 − 1)

4
e(ω

4(ω2−1))t/4φ

+e(ω
4(ω2−1))t/4φ̇ηt. (55)

That is,

ut =
ω4(ω2 − 1)

4
e(ω

4(ω2−1))t/4φ

+
ω2

2
ηe(ω

4(ω2−1))t/4φ̇. (56)

On the other hand,

ux = e(ω
4(ω2−1))t/4φ̇ηx, (57)

so that

uxx = e(ω
4(ω2−1))t/4φ̈ (ηx)

2

+e(ω
4(ω2−1))t/4φ̇ ηxx. (58)

That is,

uxx = e(ω
4(ω2−1))t/4φ̈

×
(

±e
ω
2

2
t (−ω/i)

cos(ωx/i)

ω

)2

−e(ω
4(ω2−1))t/4φ̇

×
(

∓e−
ω
2

2
t (−ω/i)2

sin(ωx/i)

ω

)

, (59)

or

uxx = ω2e(ω
4(ω2−1))t/4φ̈

(

eω
2t − η2

)

+ω2ηe(ω
4(ω2−1))t/4φ̇. (60)

Substituting the expression forut from equation
(56) and the one foruxx from equation (60) into (2),
give

ω2φ̈
(

eω
2t − η2

)

+ ω2ηφ̇

=
ω4(ω2 − 1)

4
φ+

ω2

2
ηφ̇. (61)

In the limit ω approaching zero, this equation reduces
to

(

1− η2
)

φ̈+
η

2
φ̇ = 0. (62)

That is,

φ̈

φ̇
=

1

2

η

η2 − 1
, (63)

so that
∫ η2

η1

d

dη

(

ln φ̇
)

dη =
1

2

∫ η2

η1

η̃

η̃2 − 1
dη̃. (64)

The integral on the left evaluates easily. Hence,

ln φ̇ = F̃0 +
1

2

∫ η2

η1

η̃

η̃2 − 1
dη̃, (65)

whereF̃0 is a constant. The other requires lettingη1 =
η andη2 = η + ω then invoking L’hopital’s principle.
That is,

ln φ̇ = F̃0 +

ω
2
dη
dω

d
dη

∫ η+ω
η

η̃
η̃2−1dη̃

d
dωω

. (66)

Evaluatingdη/dω:

ln φ̇ = F̃0 +
ω

2

(

ω

2
t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

×e
ω
2

2
t d

dη

∫ η+ω

η

η̃

η̃2 − 1
dη̃. (67)

The fundamental theorem of calculus ensures that the
derivative removes the integral, simplifying the equa-
tion to

ln φ̇ = F̃0 +
ω

2

(

e
ω
2

2
t | sin(ωx/i)| ± (x/i) cos(ωx/i)

)

×e
ω
2

2
t η

η2 − 1
. (68)

A further simplification on the right gives

ln φ̇ = F̃0 +
ω

2

(

ω

2
t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

× ωe
ω
2

2
t | sin(ωx/i)|

ω

η2e−
ω2

2
t − e−

ω2

2
t
. (69)

That is,

ln φ̇ = F̃0 +

ω2

2

(

ω

2
t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

×e
ω
2

2
t (±x/i) cos(ωx/i)

η2e−
ω2

2
t − e−

ω2

2
t

, (70)

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.4 Volume 14, 2020

ISSN: 2074-1278 22



so that

ln φ̇ = F̃0 +
ω2

2

(ω
2 t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

|sin(ωx/i)|2 eω2

2
t − e−

ω2

2
t

×e
ω
2

2
t (±x/i) cos(ωx/i). (71)

That is,

ln φ̇ = F̃0 +
ω2

2

(

ω
2 t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

(− cos(ωx/i))2 e
ω2

2
t + e

ω2

2
t − e−

ω2

2
t

×e
ω
2

2
t (±x/i) cos(ωx/i). (72)

The trigonometric and hyperbolic identities ensure
that there are further simplifications in the denomina-
tor. Hence,

ln φ̇ = F̃0 +
ω2

2

(

ω
2 t| sin(ωx/i)| ± (x/i) cos(ωx/i)

)

(− cos(ωx/i))2 e
ω2

2
t + 2i sin(ω

2

2i t)

×e
ω
2

2
t (±x/i) cos(ωx/i). (73)

Evaluating the limits:

ln φ̇ = F̃0 +
−x2

4t
. (74)

That is,

φ̇ = F0e
−x

2

4t , (75)

with F0 = exp(F̃0). Hence,

φ = F0

∫ η2

η1
e

−x
2

4t dη̃. (76)

The solutions for (2) follows from (54). The above
expression then leads to

u = e(ω
4(ω2−1))t/4

[

F0

∫ η2

η1
e

−x
2

4t dη̃

]

. (77)

3.1.1 The first solution throughX1

WhenF0 = −iA/ω andω = 0 inside the integral
in (77), we get

u = Ae(ω
4(ω2−1))t/4

∫ x2

x1

e
−x

2

4t dx. (78)

The plot of this result is given in Figure 1. What is in
Figure 2 is the same solution obtained through other
means by Fassari and Rinaldi [15].

-4 -2 2 4 x

0.5

1

1.5

2

2.5

3

3.5

uHt, xL

Figure 1: Plot of the solution in (78) for equation (2).

Figure 2: Plot of the solution obtained by Fassari and
Rinaldi [15] for equation (2), similar to the one in Fig-
ure 1.

3.1.2 The second solutions throughX1: Olsen’s
result.

The second solution for (2) follows from a slight
modification of invariantφ’s coefficiente(ω

4(ω2−1))t/4

in (76). It is replaced by the expression developed in
Appendix B, given in (144). Hence,

u =
1

√

(ω2 − 1)t

F0
∫ η2
η1

e
−x

2

4t dη̃

ω2
. (79)

This then invokes L’hopital’s principle in the limitω
going to zero withη1 = η andη2 = η + ω. That is,

u =
1

√

(ω2 − 1)t

dη
dω

d
dηF0

∫ η+ω
η e

−x
2

4t dη̃

2ω
. (80)

That is,

u =
1

√

(ω2 − 1)t

dη
dω

d
dηF0

∫ η+ω
η e

−x
2

4t dη̃

2ω
. (81)

Hence,

u = F0
x

2
√
t
e

−x
2

4t . (82)

This solution is sketched in Figure 3. A similar result
by Richards and Abrahamsen [16] is in Figure 4.
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-3 -2 -1 1 2 3
x

-0.4

-0.2

0.2

0.4

uHt, xL

Figure 3: Plot of the solution in (82) for equation (2).

Figure 4: Plot of the solution obtained by Richards
and Abrahamsen [16] for equation (2), similar to the
one in Figure 3.

3.1.3 The third solution through X1: Bluman’s
result.

Another solution is possible out of (81), and is
made possible by The factoreω

2t/2 in η with µ =
ω2t/2. It takes the form

u = F0
x

2t3/2
e

−x
2

4t . (83)

This result is the same as the second component in
Bluman’s solution withC2 = F0/2.

3.2 Invariant solutions through the symme-
try X2

Determining solutions throughX2 is very much the
same as throughX1, because the two symmetries are
very much alike. The invariants have similar forms.
That is,

η = e
ω
2

2
t | cos(ωx/i)| (84)

and

u = e(ω
4(ω2+1))t/4φ(η). (85)

This means

ut =
ω4(ω2 + 1)

4
e(ω

4(ω2+1))t/4φ

+e(ω
4(ω2+1))t/4φ̇ηt. (86)

That is,

ut =
ω4(ω2 + 1)

4
e(ω

4(ω2+1))t/4φ

+
ω2

2
ηe(ω

4(ω2+1))t/4φ̇. (87)

On the other hand,

ux = e(ω
4(ω2+1))t/4φ̇ηx, (88)

so that

uxx = e(ω
4(ω2+1))t/4φ̈ (ηx)

2

+e(ω
4(ω2+1))t/4φ̇ ηxx. (89)

That is,

uxx = e(ω
4(ω2+1))t/4φ̈

×
(

−e−
ω
2

2
t (−ω/i)

sin(ωx/i)

ω

)2

−e(ω
4(ω2+1))t/4φ̇

×
(

e−
ω
2

2
t (−ω/i)2

cos(ωx/i)

ω

)

, (90)

or

uxx = ω2e(ω
4(ω2+1))t/4φ̈

(

e−ω2t − η2
)

+ω2ηe(ω
4(ω2+1))t/4φ̇. (91)

Substituting the expression forut from equation
(87) and the one foruxx from equation (91) into (2),
give

ω2φ̈
(

e−ω2t − η2
)

+ ω2ηφ̇

=
ω4(ω2 + 1)

4
φ+

ω2

2
ηφ̇. (92)

In the limit ω approaching zero, this equation reduces
to

(

1− η2
)

φ̈+
η

2
φ̇ = 0. (93)

That is,

φ̈

φ̇
=

1

2

η

η2 − 1
, (94)

so that

∫

d

dη

(

ln φ̇
)

dη = F0 +
1

2

∫

η

η2 − 1
dη, (95)

whereF0 is a constant.
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The Gaussian function solution follows from re-
versing the integral on the right side of equation (95).
This requires the use of L’hopital’s principle. We in-
duce this by introducingω to the denominator, and
another one in the numerator for balance:

∫

d

dη

(

ln φ̇
)

dη = ω

1
2

∫ η
η2−1dη

ω
. (96)

Next, we use the result

lim
ω→0

[
∫ η+ω

η

η̃

η̃2 − 1
dη̃

]

= 0, (97)

in conjunction with L’hopital’s principle on (96), to
yield

∫

d

dη

(

ln φ̇
)

dη = ω

1
2

d
dω

∫ η
η2−1dη

dω
dω

, (98)

so that
∫

d

dη

(

ln φ̇
)

dη =
ω

2

dη

dω

d

dη

∫

η

η2 − 1
dη. (99)

Now introducing the value forη to the coefficient:
∫

d

dη

(

ln φ̇
)

dη

=
ω

2
(ω| cos(ωx/i)| − (±x/i) sin(ωx/i))

×e
ω
2

2
t d

dη

∫

η

η2 − 1
dη. (100)

The fundamental theorem of calculus ensures that the
derivative removes the integral, simplifying the equa-
tion to

∫

d

dη

(

ln φ̇
)

dη

=
ω

2
(ω| cos(ωx/i)| − (±x/i) sin(ωx/i))

×e
ω
2

2
t η

η2 − 1
. (101)

A further simplification on the right gives
∫

d

dη

(

ln φ̇
)

dη

=
ω

2
(ωt| cos(ωx/i)| − (±x/i) sin(ωx/i))

× | cos(ωx/i)|
η2e−

ω2

2
t − e−

ω2

2
t
. (102)

Sinceω is small, we get
∫

d

dη

(

ln φ̇
)

dη

=
ω

2
(ωt| cos(ωx/i)| − (±x/i) sin(ωx/i))

× | cos(ωx/i)|
η2e−

ω2

2
t − e−

ω2

2
t
, (103)

so that
∫

d

dη

(

ln φ̇
)

dη

=
ω
2 (ωt| cos(ωx/i)| − (±x/i) sin(ωx/i))

(cos(ωx/i))2 e
ω2

2
t − e−

ω2

2
t

×| cos(ωx/i)|. (104)

That is,
∫

d

dη

(

ln φ̇
)

dη

=
ω
2 (ωt| cos(ωx/i)| − (±x/i) sin(ωx/i))

(− sin(ωx/i))2 e
ω2

2
t + e

ω2

2
t − e−

ω2

2
t

×| cos(ωx/i)|. (105)

The first solution is
∫

d

dη

(

ln φ̇
)

dη

=

ω2

2

(

t| cos(ωx/i)| − (±x/i) sin(ωx/i)ω

)

(− sin(ωx/i))2 e
ω2

2
t + 2i sin

(

ω2

2i t
)

×| cos(ωx/i)|, (106)

so that
∫

d

dη

(

ln φ̇
)

dη = −x2

4t
. (107)

That is,

φ̇ = F0e
−x

2

4t , (108)

or

φ = F1 + F0

∫

e
−x

2

4t dη, (109)

whereF0 is a constant. The expression foru then
assumes the form

u = e(ω
4(ω2−1))t/4

[

F1 + F0

∫

e
−x

2

4t dη

]

. (110)

3.2.1 The first solution throughX2

Whenω = 0 andF0 = −A/ω in (110), we get

u =

[

F1 + F0

∫

e
−x

2

4t xdx

]

, (111)

so that

u = F1 +Ae
−x

2

4t . (112)

This solution is plotted in Figure 5.
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Figure 5: Plot of the solution in (112) for equation (2).

Figure 6: Plot of the solution by Gerald Recktenwald,
similar to the one in Figure 5.

3.2.2 The second solution throughX2: Bluman’s
second result.

The second solution throughX2 follows a similar
procedure as was forX1, leading to

u =
A

2
√
t
e

−x
2

4t . (113)

This result is the same as the first component in
Bluman’s solution withC1 = 1/2. It is sketched in
Figure 7. A similar result by Balluffi, Allen and Carter
[17] is in Figure 8.

3.2.3 The third solution through X2: Ibragi-
mov’s result.

Like the second solution, a third solution takes the
form

u =
A

2t3/2
e

−x
2

4t . (114)

This result is the same is a special case of Ibragimov’s
solution withn = 3.

-4 -2 2 4 x

0.2

0.4

0.6

0.8

1
uHt, xL

Figure 7: Plot of the solution in (113) for equation (2).

Figure 8: Plot of the solution obtained by Balluffi,
Allen and Carter [17] for equation (2), similar to the
one in Figure 7.

Other solutions through X2

More solutions follow from evaluating the limits
in (101) by following a different path, leading to

∫

d

dη

(

ln φ̇
)

dη

=
ω2

2 {−(±x/i)(x/i)}
(− sin(ωx/i))2 e

ω2

2
t + 2i sin

(

ω2

2i t
)

× cos(ωx/i)| cos(ωx/i)| (115)

so that
∫

d

dη

(

ln φ̇
)

dη = ∓ x2

2(x2 − t2)
. (116)

Hence,

u = F1 + eω
4(ω2+1)F0

∫ η2

η1
e
± x

2

2(x2−t2)dη̃. (117)

3.2.4 A first couple of solutions throughX2

A simple pair of solutions results from (117)
whenω goes to zero requires. That is,

u = F1 + F0

∫ η2

η1
e
− x

2

2(x2−t2)dη̃ (118)

and

u = F1 + F0

∫ η2

η1
e

x
2

2(x2−t2) dη̃. (119)

3.2.5 A second couple of solutions throughX2

Settingη1 = η and η2 = η + ω in (117) and
letting ω go to zero requires thatF0 = −A/ω for
some constantA. This invokes L’hopital’s principle,
so that

u = F1 +Ae
− x

2

2(x2−t2) (120)

and

u = F1 +Ae
x
2

2(x2−t2) . (121)

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.4 Volume 14, 2020

ISSN: 2074-1278 26



3.2.6 A third couple of solutions throughX2

As was the case forX1, the limits in Appendix B
can be used to create more solutions. The following
pair results:

u = F1 +
A√
t
e
− x

2

2(x2−t2) (122)

and

u = F1 +
A√
t
e

x
2

2(x2−t2) . (123)

3.2.7 A fourth couple of solutions throughX2

Continuing with the argument started in the pre-
ceding section leads to the fourth couple of solutions:

u = F1 +
A

t3/2
e
− x

2

2(x2−t2) (124)

and

u = F1 +
A

t3/2
e

x
2

2(x2−t2) . (125)

It is apparent from these calculations that though
X2 are largely of the family

u = f(t, x)e
± x

2

2(x2−t2) . (126)

4 Applications: Heat conduction in
thin plates.

As mentioned in the Introduction, there are many
methods used in practice to solve (2), an equation that
finds application in a number of different situations.
The backward heat equation

uxx = −ut, (127)

too, does arise in practice. Unfortunately, without an-
alytical solutions, one could end up applying one of
the two equations to a situation to which it does not
apply.

For example, in a study on heat conduction in thin
plates, Hancork [18] deduced solutions for (2) pre-
sented in Figure 9. These we unpack in Figures 10,
11 and 12 using (120). Unfortunately, practical results
indicate it is (127) which is applicable to this situation.
This we deduce from the fact that impractical singu-
larities arise whenu is plotted againstt when (120) is
used, but disappear when this expression assumes the
form

u = F1 +Ae
− x

2

2(x2+t2) , (128)

satisfying both (127) and empirical results, plotted in
Figure 13. These are clearly in the family of the form

u = f(t, x)e
± x

2

2(x2+t2) (129)

Figure 9: Plot of the solution obtained by Hancork
[18] for equation (2) for casest = 0, t ≈ 0 andt >>
0, all stacked onto the same sketch.
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Figure 10: Plot of the solution in (120) for equation
(2), similar to the one in Figure 9 fort = t0 >> 0.
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Figure 11: Plot of the solution in (120) for equation
(2), similar to the one in Figure 9 fort = t0 ≈ 0.

5 Conclusion

In this study, new symmetries were obtained for the
heat equation, and two were used to determine group
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Figure 12: Plot of the solution in (120) for equation
(2), similar to the one in Figure 9 fort = t0 = 0.
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Figure 13: The solid curve is from (128) for the back-
ward heat equation (127), while the other curves are
from (120) for the heat equation (2).

invariant solutions. It was shown they do not only lead
to solutions possible through old symmetries, but also
to new solutions, including the ones possible through
other methods.

APPENDIX A: Generalising Euler’s formu-
las for solving second order ordinary differential
equations

It is well-known that Lie’s group theoretical
methods seek to reduce procedures for solving dif-
ferential equations of any challenging form to simple
ones that may also have the form

a0ÿ + b0ẏ + c0y = 0, (130)

for y = y(x), with parametersa0, b0 andc0. It is also
that accepted Euler’s formulas are suitable for solving

Figure 14: The temperature against time curve ob-
tained by Hancork, valid fort ≥ 1/π2, comparable
to the solution in Figure 13.

such equations. They are:

y =



























e
−

b0
2a0

x (
Ae−ω̃x +Beω̃x

)

, b20 > 4a0c0,
A+Bx, b20 = 4a0c0,

e
−

b0
2a0

x
[A cos(ω̃x)]

+Be
−

b0
2a0

x
[sin(ω̃x)], b20 < 4a0c0

(131)

whereω̃ =
√

b20 − 4a0c0/(2a0).
But there is a problem with this system: It does

not reduce toy = A+Bx whenb0 = c0 = 0. This is
because Euler did not solve the equation to get the for-
mulas. There has never been a need to do so, primarily
because the formulas have been very successful in ap-
plications, and they still are.

The need for an exact solution here, is driven
by the desire understand solutions for equation (2)
through symmetry methods. It is impossible through
Euler’s formulas. To get such exact formula, first let

y = βz,

with β = β(x) andz = z(x), so that

ẏ = β̇z + βż,

and
ÿ = β̈z + 2β̇ż + βz̈.

These transform (130) into

a0
(

β̈z + 2β̇ż + βz̈
)

+ b0
(

β̇z + βż
)

+ c0βz = 0.

That is,

a0βz̈+
(

2a0β̇ + b0β
)

ż+
(

a0β̈ + b0β̇ + c0β
)

z = 0.

(132)
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Choosingβ to satisfy 2a0β̇+b0β = 0 simplifies equa-
tion (132). That is,

β = C00e
−b0
2a0

x
,

for some constantC00. Equation (132) assumes the
form

z̈ = − a0β̈ + b0β̇ + c0β

a0β
z.

That is,

z̈ =

(

b20 − 4a0c0
4a20

)

z.

But z̈ can be written aṡzdz/dx. Therefore,

ż
dż

dz
=

(

b20 − 4a0c0
4a20

)

z,

or

żdż =

(

b20 − 4a0c0
4a20

)

zdz.

That is,

ż2

2
=

(

b20 − 4a0c0
4a20

)

z2

2
+ C01,

for some constantC01. That is,

ż =

√

√

√

√

(

b20 − 4a0c0
4a20

)

z2

2
+ C01,

or
dz

√

(

b20−4a0c0
4a20

)

z2 + 2C01

= dx.

That is,

dz
√

A2
00 − z2

=

√

−b20 − 4a0c0
4a20

dx,

withA2
00 = 2C01/

√

− b20−4a0c0
4a20

. Hence,

z =
2C01

√

− b20−4a0c0
4a20

× sin

(

√

−b20 − 4a0c0
4a20

x+ C02

)

,(133)

for some constantC02. That is,

y = C00e
−b0
2a0

x 2C01
√

− b20−4a0c0
4a20

× sin

(

√

−b20 − 4a0c0
4a20

x+ C02

)

.(134)

Letting

ω̄ =

√

−b20 − 4a0c0
4a20

we have

y = C00e
−b0
2a0

x 2C01
ω̄ sin (ω̄ x+ C02) ,

or

y = C00e
−b0
2a0

x
2C01 [ sin(C02)

ω̄ cos (ω̄ x) +

cos (C02)
sin(ω̄ x)

ω̄ ].
A reduction to the trivial casëy = 0 requires that
sin(C02) = C03 sin(ω̄) andcos(C02) = C04 cos(ω̄).
That is,C2

03 + C2
04 = 1. Hence,

y = C00e
−b0
2a0

x
2C01 [C03 sin(ω̄)

ω̄ cos (ω̄ x) +

C04 cos (ω̄)
sin(ω̄ x)

ω̄ ],
or simply

y = C00e
−b0
2a0

x
2C01

C03 sin (ω̄) cos (ω̄ x)

ω̄

+C00e
−b0
2a0

x
2C01

C04 sin (ω̄ x)

ω̄
. (135)

It is very vital to indicate that if the parameters̄ω in
the denominator andsin (ω̄) are absorbed into the co-
efficientsC01 andC03, then formula (135) would re-
duce to one of Euler’s formulas. But the consequences
would be fatal, as formula (135) would not reduce to
y = A+Bx whenb0 = c0 = 0, that is, when̄ω = 0.

Unfortunately, this result cannot be found in any
university textbook.

APPENDIX B: Useful limit results
It is true that

lim
µ→0







sin
(

µt
i

)

µ







=
t

i
.

Thiscan be written in the form

lim
µ→0

{

sin
(µx

i

)

µ
− t

i

}

= 0,

or

lim
µ→0







sin
(

µt
i

)

µ
− t

i
cos

(

µt

i

)







= 0.

Removing the ‘lim’ for greater clarity:

sin
(

µt
i

)

µ
=

t

i
cos

(

µt

i

)

.
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That is,

sin

(

µt

i

)

=
t

i
µ cos

(

µt

i

)

, (136)

or

cos

(

µt

i

)

=
i

t

sin
(

µt
i

)

µ
.

We then have

cos
(

µt
i

)

µq
= µ

cos
(

µt
i

)

µq+1
.

Carrying out the derivative on the right hand side:

cos
(

µt
i

)

µq
=

−µ
( t
i

)

sin
(

µt
i

)

+ cos
(

µt
i

)

µq+1
.

Substituting (136):

cos
(

µt
i

)

µq
=

−µ2
(

t
i

)2
cos

(

µt
i

)

+ cos
(

µt
i

)

µq+1
.

That is,

µ cos

(

µt

i

)

= µ2t2 cos

(

µt

i

)

+ cos

(

µt

i

)

, (137)

which can be expressed in the form

µ2 cos

(

µt

i

)

− µ3t2 cos

(

µt

i

)

=
i

t
sin

(

µt

i

)

.

(138)
Sincesin

(

µt
i

)

= 0 for µ small, it follows then that

µ2 cos

(

µt

i

)

= µ3t2 cos

(

µt

i

)

. (139)

Sinceeµt ca be expressed in the formcos(µt/i) +
i sin(µt/i), then

µ2eµt = µ3t2 cos

(

µt

i

)

, (140)

so that

√
µeµt/4 =

[

µ3 cos

(

µt

i

)]
1
4 √

t, (141)

or

√
µe−µt/4 =

[

µ3 cos

(

µt

i

)]
1
4 √

t, (142)

Therefore (54) and (54) can then be written in the form

u =

√
µ

[

µ3 cos
(

µt
i

)]
1
4
√
t

φ(η), (143)

with µ = ω4(ω2 − 1) in the case of (54) andµ =
ω4(ω2 + 1) for (85). That is,

u =
1

√

(ω2 − 1)t ω2
φ(η) (144)

for (54), and

u =
1

√

(ω2 + 1)t ω2
φ(η) (145)

for (85).
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