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Abstract: Using a Lie symmetry group generator and a generalised form of Euler’s formula for solving second order
ordinary differential equations, we determine new symmetries for the heat equation, leading to new solutions. As
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1 Introduction

There is something odd and rarely commented upon
that is at the core of some, if not all known analytical
solutions of the heat equation

0%u ou
CW = cpg, (1)
or
Ugpy = Ut, (2)

where(C' is known as the thermal conductivity,the
specific heatp the densityu is temperature that de-
pends on position: and timer, with ¢t = k7 and

k = C/(cp), called the thermal diffusivity. The un-
settling matter is that the solutions suggest that when
t = 0 we should always have = 0, which we find
impractical. Impractical in that one then cannot have
arbitrary initial conditions likeu(t = 0,z9) = up
without 4y = 0. Numerical techniques, on the other
hand, do not have this problem, implying that there is
some unknown analytical solution waiting to be un-
earthed.

This we address using Lie’s symmetry group the-
oretical method, a technique he introduced centuries
ago through the now famous paper [1]. It is worth
noting that this technique has been applied before on
this equation, and that two very distinct solutions have
consistently resulted. They are in the linear combina-
tion

u = ie_% (C +C E) 3)

and can be found in Bluman’s work and the work he
did with others, including with Kumei [2]. The same

ISSN: 2074-1278 18

results are also contained in the work with Cole, com-
municated by Keller [3], also with Anco [4]. The pa-
rametern contained in the result Ibragimov [5] got

z2
U= \S—to_ne_ﬁ, (4)

generates a broader perspective to one of Bluman'’s
solutions. Olsen [6], used a very clever trick to get

U= —F=¢€ 4 .

2V

Clearly, this result together with (3) and (4) are obvi-
ously in the family of solutions of the form

T —a?
t

()

2

u=f(t,x)e . (6)

The factor exp(—22/(4t)) guarantees that = 0
whent = 0.

Other contributions in the field are by Kallianpur,
Karandikar [7], Kwok [7], Hui [8], Longstaff [9] and
Platen [10]. There are also studies by Naicker, An-
driopoulos and Leach [11], Pooe, Mahomed and Soh
[12], Sinkala, Leach and OHara [13], and Gazizov and
Ibragimov [14].

In this contribution, we determine new symme-
tries for (2), leading to new invariant solutions. This
requires introducing a new infinitesimal parameter
Infinitesimal parameters are not new to Symmetry
analysis. What we do differently is that the param-
eter is not introduced into the symmetry generator as
is customary, but outside of it. To realise this, we in-
voke Euler’s formulas for solving second order ordi-
nary differential equations, discussed in Appendix A.
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We show that in addition to the family of solutions
espaised in (6), there is a whole new family mapped
by a paired couple presented in (126). And also sug-
gest (129) as an alternative to averting the arbitrary
zero inu whent = 0.

2 Solution of the determining equa-
tion

In order to generate point symmetries for equation (2),
we first consider a change of variables froms andu

to t*, z* andwu* involving an infinitesimal parameter
e. A Taylor’s series expansion inneare = 0 yields

t* =~ t+€el(t,z,u)
o~ r+e(t,x,u) @)
vt o~ u+eCt,r,u)

where o
8—5*|E:0 = T(t,x,u)
aaie e=0 — g(tv z, ’LL) (8)
% e=0 = (t,l‘,U)

The tangent vector field (8) is associated with an op-
erator 5

0 0
i + fa—x + C%a 9)
cdled a symmetry generator. This in turn leads to the
invariance condition

X=T—

X (e — ) |y ey = 0, (10)

where X is the second prolongation &f. It is ob-
tained from the formulas:

X = X+ Ct aut + C:c au + Ctt Butt
+ Ct:l,‘ autw + CCCSC aumz’
(11
where
1
Wo= Gl - - Fa,
(12)
1
o = —i—uaf—i-[f gi ux—%fut,
(13)
(2 _ *f of _ 9*T 2%¢
G = at2 Tuge + {2 ot Wf} Ut — Gz Uz
+ [f - 2%—{} Ut — 2%'%1‘;
(14
2 2
C‘gzr) - 8:1:2 + uax‘); + [2 f %} Uy — %Ut
+ {f - 22_7;} Ugxy — 22_7;1%907
(15)
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and
2 _ 02 o f of _ 02T
Gtz = s + UgmEs T [2 or 8t8a:} U
of 0% or _og
+ {25 - 8t8a:] Uy — {f ot %} Utz
_g_zutt - ot Yzz-
(16)

It is to be understood here that the simplification

C(t,z,u) = uf(t,x) + g(t,z) is adopted from the
calculations that led to the old symmetries:

Yl = 827

Y2 = gja

Ys = Ty, + 25,

Y, = atZ 422 +(§+%)ua%, (17)

Y, = 10 _zud

ox 2 ou’
YVG = ’LL%,
Yoo = g(t> 33‘) ou

These are mentioned here to ease comparison with our
own, which are at the end of this section.

The invariance condition (10) then leads to the
equation

2 2

gt ot uph o+ 28 - - GEw 4
or o9 _ 0 or

[f_2 } — 250w — G —u% — [f_ﬁ} Ut +-

afcux—O

)
called determining equation, from which follows the
monomials

Uty Tx =0
Ut : ﬂ—2§x20
Up 1 2fe =& + 5 =0 (18)
U : f:ca:_ftzo
1 : g:ca:_gt:O

called the defining equations.

To begin solving these, we note that the first defin-
ing equationT,, = 0, suggests thdf’ should not de-
pend onz. The implication is that we would end with
less number of symmetries if we continue this way.
Fortunately, we now have formula (135) to remedy
this.

We use the formula to generate some dependence
onz for T'. That is,T" depends on bothandxz near
e = 0, but not ate = 0. Differentiating this defining
equation with respect tg gives

Ty = 0. (29)
This can then be used to simplify the second defining
equation. When the latter is differentiated with respect
to x, we get
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Because the functioff’ is aralytic everywhere, Eu-
ler's mixed derivatives theorem holds, meanifig =
T;.. This then reduces (20) into

which then integrates into
§ =a—+ b, (22)

wherea = a(t) andb = b(t). This expression is sim-
ilar to the one appearing with Euler's formulas in the

system (131). The discussion there was that the mid-
dle expression cannot be transformed into the other

two, then we had to introduce (135) to make it possi-
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The substitution leads to
(a+ d)w? =i+ a®, (29)

and
(b—B)w? =0,

To solve (29), we note it can be written in the form

(30)

ble. That expression becomes handy here, because wegypsequently,

can now express (22) in the form

a¢ cos(wz /i) + bsin(wx /i)
w/i ’

where¢ = sin(w/7). It is clear that (22) reduces to

(21) whenw — 0. The second defining equatidf,—
2¢, = 0, then leads to

£= (23)

—2a¢ sin(wz /i) 4 2b cos(w /1)
w

where Ay is a constant. Thu$ now appears to also

depend onz, but we know this is subject to = 0.

Substitutings and7” from equations (23) and (24) into
the third defining equatior f, = 7., — n:, leads to

T —

+ AOv (24)

_?%cos(wx/i) — b%sm(ww/z)

2f:c =
) N .
awcos(ww/z) " sin(wz /i), (25)
Integrating this with respect to gives
f = —(a+a) gsm(wx/z)
N . By
+ (b — b) icos(ww/z) + EX (26)
where By is a constant. We now substitute this into
the fourth defining equation to establish the functions

a andb. First we differentiate (26) once with respect
tot:

ft = — (d + a(g)) ?sm(wm/z)
+ (b - b(?’)) %cos(wx/i), (27)
then twice with respect to:
foo = —(a+a) %wzsin(wx/i)
+ (b - b) %cos(wx/i). (28)
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. (3)
Gra” _ .2 31)
a-+a
That is, ,
a+d=Coe“ . (32)
Co 1 w2t —t
a:ﬁwhrle + Cq + Coe™". (33
Similarly, solving equation (30) yields
D 1
b=—g———c"t + D1+ Dye!,  (34)
w*w=—1

for some constani§y, C1, Cs, Dy, D1 and Ds.

2.1

The linearly independent solutions of the defining
equations (18) lead to the infinitesimals

—2¢ (ﬁe“%) sin(wx /1)
—2¢ (C’lt - C’ge_t) sin(wz /1)
+2 (%e“ﬂt) cos(wz /1)

+2 (Dlt + Dget) cos(wx /1) + Ao, (35)

Infinitesimals

T —

SEETE A
%ﬁ (€1 + Coe™) cos(wafi)
+£ (% w21— N e‘”2t) sin(wz /1)
+£ ( Dy + Dget) sin(wz /i) (36)
and
;= e * sin(ui)
_DO%% cos(wx /i) + %- (37)
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2.2 The symmetries

Accoarding to (9), the infinitesimals: (35), (36)

and (37), lead to the generators

2ew2t
wi(w? —1)

w2t

X: = cos(wz /1)

ot

ie
w3(w? — 1)
ert

- 5 cos(ww/z)u%,

+ sin(wx/i)%

2¢ew2t
Wt (w? +1)
2
7 ewt
T 3¢2
wi(w? +1)

w3t

sin(wx /1) 9

ot

cos(wz /i) —

ox

¢e

sin(wx /i) u—,

ou

X3 = —2¢tsin(waz/i)%

i L0
+; cos(wx/z)%,

Xy = 2tcos(wx/i)%

i, L0
+; sm(wx/z)%,

X5 = 2¢pet sin(wx/i)%

b cos(wx /i)

o _
T or’

X¢ = 2¢ cos(wa:/i)%

¢ sin(ww/i)%,

i
+—e
w

0
Xg = u%

The last defining equation leads to an infinite symme-

try generator.
0
Xoo = g(t, 90)%-

ISSN: 2074-1278

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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3 Construction of invariant solutions
for (2)

The symmetriesX7, Xg and X, are not different
from Y5,Ys and Y., obtained by Bluman and oth-
ers, as such unlikely to lead to anything not already
known. We limit our construction of invariant solu-
tions toX; and X5, as they appear to be broader and
more encompassing thatis, X4, X5, and Xg. What

is certain is thatX3 and X, are automatically ad-
dressed.

3.1 Invariant solutions through the symme-
try X

The characteristic equations that arise from the sym-
metry X;:

wh(w? — 1)e~«"tdt w3 (w2 — 1)e < tdg

2 cos(wz /1) sin(wx /1)
2e~<tdy,
_e
cos(wz/i)u’ “7
lead to
whw? — 1)e_w2tdt w3 (w? — 1)e_w2tdx
. = . . , (48
cos(wx /1) sin(wx /1)
and
40,2 1 —w?t —w?t
w(w )e . dt: 2e du . (49)
2 cos(wz /1) cos(wzx/i)u
Equation (48) becomes
D2t — _2(w/z).cos(ww./z)dw’ (50
sin(wx /1)
so that
A = —w?t — 2In|sin(wz /). (51)
Hence,
w2
n=ez"|sin(wz/i)| (52)
wheren = exp(—\/2).
Equation (49) becomes
40,2
wH(w® —1)dt _ @7 (53)
4 U
so that the invariant solution has the form
u =@ @), (54)
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This means
v = w4(wz - 1)6(w4(w2—1))t/4¢
@@=t/ gy, (55)
That is,
v = @D ey
4
) (56)
On the other hand,
up = e DGy (57)
so that
Upp = @ IG5 )2
fe@! @ DAG (58)
That is,
Uy = €@ @ 1)/AG
2 i)\
(e (g 20
et @ D)t/
x(yr%tvwﬁfﬂﬂgﬂ@), (59)
or
Ugy = w2e(w4(w2—1))t/4¢5 (eoﬂt . 772)

+w2ne(w4(w2—1))t/4¢. (60)

Substituting the expression fa from equation
(56) and the one fot,, from equation (60) into (2),
give

wzé (ew2t . 772) + wzn(ﬁ
whw? —1

S DL 6

In the limit w approaching zero, this equation reduces

to

2 . 77._
(1—n)¢+§¢_0. (62)
That is,
o 1 g
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0 that

2d 1
ln(b dn—i/

df].
m d??

(64)
The integral on the left evaluates easily. Hence,

1 [m 7l
Ing = F
np= "3 ), Bo1

(69

whereF} is a constant. The other requires letting=
n andny = 1 4+ w then invoking L'hopital’s principle.
That is,

(66)

Evaluatingdn /dw:
ln(ﬁ = FO +
g <ft| sin(wx /1)| &+ (/1) cos(w:n/i))

n+w
xeT _/

The fundamental theorem of calculus ensures that the
derivative removes the integral, simplifying the equa-
tion to

(67)

lnq.ﬁ = FO +

% (e%t | sin(wz/1)| £ (z/7) cos(ww/i))

et (68)
n?—1

A further simplification on the right gives
hquB = F(] +

g (gt] sin(wx /7)| £+ (x /1) cos(wx/i))

w2y | sin(wz/7)|

we z -
X — —- (69)
n2e” 2zt —e 2t
That is,
ln(ﬁ =Fy+
2w
> (515\ sin(wx /7)| £+ (x/1) cos(wx/z’))
2
e Tt (£x/i) cos(wz /i
(T G costor]h) (70)
n2e” 2zt —e 2t
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so that
Ing = Fy +
X (9] sin(wa/i)] £ (/i) cos(wa/i)) v
|sin(wz/7)|? et et v
xew;t (/i) cos(wx /7). (72) SRR
That is, Figure 1: Plot of the solution in (78) for equation (2).
Ing = Fy +
< (9t sin(wa/i)] + (/i) cos(wa/i))
(— cos(wz/i))? A S \
xew;t (£x /i) cos(wx /i). (72) ‘ E—

The trigonometric and hyperbolic identities ensure
that there are further simplifications in the denomina-

tor. Hence,

IHQZBZF()—I—

“J—Q (Yt]sin(wz/i)| £ (x/i) cos(wz /1))

(— cos(wz/i))? e
xe% (£ /1) cos(wx /7).

Evaluating the limits:

2

111(]5 F0+—.

4t
That is,

2

q‘b: Foeilit’

with Fy = exp(Fp). Hence,

2t .. w?
7' 4 2isin(%:1)

Figure 2: Plot of the solution obtained by Fassari and
Rinddi [15] for equation (2), similar to the one in Fig-
ure 1.

3.1.2 The second solutions throughX;: Olsen’s
result.
(73)
The second solution for (2) follows from a slight
modification of invariant)’s coefficiente(®" (+* =1))t/4
in (76). Itis replaced by the expression developed in
(74) Appendix B, given in (144). Hence,

a2
u = 1 o 17712 €Td77' (79)
(75) (w2 —1)t w?

This then invokes L’hopital’s principle in the limit
going to zero withy; = n andrn, = n + w. That s,

2 _gz2
¢ = Fo/ e 4t dr. (76)
| " | B e
The solutions for (2) follows from (54). The above uw= > @ . (80)
expression then leads to (w? = 1)t 2w
" e(w4(w2_1))t/4 [FQ /772 e%fdﬁ] . 77 That is,
m
dn d F n+w d
3.1.1 The first solution through X; w = 1 w0y " e o i (81)
(W2 —1)t 2w
WhenF, = —iA/w andw = 0 inside the integral
in (77), we get Hence,
LA w1t/ /:”2 —a? 2
u = Ae . eat dx. (78) " F07e = (82)

The plot of this result is given in Figure 1. What is in
Figure 2 is the same solution obtained through other This solution is sketched in Figure 3. A similar result

means by Fassari and Rinaldi [15].

ISSN: 2074-1278

by Richards and Abrahamsen [16] is in Figure 4.

23
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w4(w2 + 1) 6(w4(w2+1))t/4(]§

On the other hand,

Figure 3: Plot of the solution in (82) for equation (2).

so that
That is,

Figure 4: Plot of the solution obtained by Richards

and Abrahamsen [16] for equation (2), similar to the

one in Figure 3.

3.1.3 The third solution through X;: Bluman’s

result.
Another solution is possible out of (81), and is OF
made possible by The factet’/2 in n with 4 = u

w?t/2. It takes the form

2

x
—2t3 72 e 4t

=F 47

U (83)

4
2
w .
+7ne(w4(w2+l))t/4¢‘ (87)
v = e(w4(w2+1))t/4¢'577m’ (88)
Uy = e(w4(w2+1))t/4é (T]Z‘)2
+e(w4(w2+1))t/4¢'5 Nz (89)
u:l,‘:l,‘ = e(w4(w2+1))t/4é
2 . AN 2
X <—e—7t (—w/i) M)
w
_e(w4(w2+1))t/4q'3
W2 )
v <e—7t (—w/i)? L(zw/ Z)> . (90)
_ w2e(w4(w2+1))t/4<5 (e—w2t o 772)

+w2ne(w4(w2+1))t/4¢3' (91)

Substituting the expression fa; from equation

(87) and the one fot,, from equation (91) into (2),

This result is the same as the second component in give
Bluman'’s solution withCy = F /2.

3.2 Invariant solutions through the symme-

try X
Determining solutions througlX, is very much the In the limi
same as througlX;, because the two symmetries are g

very much alike. The invariants have similar forms.
That is,

LL}2 .
n=ez! | cos(wz /7)] (84) That is,
and
u = @ WY, (85)
0 that
This means
d
4 2
vy = (W4+ 1)e(w4(w2+1))t/4¢ /d_??
e WD)/ Gy (86) whereFy i
ISSN: 2074-1278 24

w2 (e‘“’Qt — 772) + w’né

wiw? +1 w? .
= %525 + 777515- (92
t w approaching zero, this equation reduces
2 . 7’] . .
(1-n*)é+26=0. 93
2
o6 1 7
STIET (94)
(nd)dn=F+ / ol (%)

S a constant.
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The Gaussian function solution follows from re-

verdng the integral on the right side of equation (95).

This requires the use of L'hopital’'s principle. We in-
duce this by introducingv to the denominator, and
another one in the numerator for balance:

1 7
/di (nd) dy = W2 Eah (96)
n w
Next, we use the result
lim / T dﬁ] —0 ©@7)
w—0 n fl2 -1 ’

in conjunction with L’hopital’s principle on (96), to
yield

1d r_n_
d | . 2dwf772—1dn
so that
d . wdn d n
— (1 = . 99
/dn(n¢)dn 2dwd77/772—1d77 (%9)

Now introducing the value fay to the coefficient:

/d% (1n¢'>) dn

= % (w]cos(wzx/i)| — (£x /i) sin(wx /1))

w2, d
xeTt—/ U dn.
dnJ) n?2 -1

(100)

The fundamental theorem of calculus ensures that the
derivative removes the integral, simplifying the equa-

tion to
d .
/ i (1n6) dn
= % (w| cos(wz/i)| — (£x/i) sin(wz /1))

2
Yt 77
Xe 2 .
e 772_1

A further simplification on the right gives

/% (ind) dn

= g (wt| cos(wx /i)| — (£ /i) sin(wzx /7))

(101

| cos(wz/7)]
. 10
7726_“)2_% _w_22t ( a

— €
Sincew is small, we get

/% (ind) dn

= g (wt| cos(wx/i)| — (£ /i) sin(wz /7))

| cos(wz/7)]
2 2 s

w
n2e” 2zt —e 2t

(103

ISSN: 2074-1278 25
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so that

/din (ln qﬁ) dn
5 (wt|cos(wz/i)| — (£ /i) sin(wx/i))

- 2 2
(cos(wz/i))?eTt —e™ T

x| cos(wz/1)].

t

(104)
That is,

/d% (1n6) dy

& (wt]cos(wz/i)| — (£ /i) sin(wz /7))

2 2 2
(—sin(wz/i))? e Tt Tt —e Tt
x| cos(wx /). (105)

The first solution is
d .
/ d_n (1n qs) dn
o (tlcos(wa/i)| — (a/i)2nles))

2
(—sin(wz/i))? e Tt + 2isin (g—jt)

x| cos(wz /), (106)
so that
/% (n4) dn:—i—j. (107)
That is,
b= Fpe i, (109
or
é=F + F / e dn, (109)

where Fj is a constant. The expression ferthen
assumes the form

g2
u = @ W =1)t/4 [Fl + B / ern} . (110)

3.2.1 The first solution through X,
Whenw = 0 andFy = —A/w in (110), we get

2
u = {Fl + Fo/eTxdw] , (111)
so that
2
u=Fy + Ae 3t . (112

This solution is plotted in Figure 5.
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Figure 6: Plot of the solution by Gerald Recktenwald,
similar to the one in Figure 5.

3.2.2 The second solution throughX,: Bluman’s
second result.

The second solution through; follows a similar
procedure as was foXy, leading to

A a2
t

U= —F=¢€ 4 .,

2V

This result is the same as the first component in
Bluman'’s solution withC; = 1/2. It is sketched in
Figure 7. A similar result by Balluffi, Allen and Carter
[17]is in Figure 8.

(113

3.2.3 The third solution through Xs:
mov’s result.

Ibragi-

Like the second solution, a third solution takes the
form

A s
= %T/?e 4t

u

(114

This result is the same is a special case of Ibragimov’s

solution withn = 3.

Figure 7: Plot of the solution in (113) for equation (2).
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Figure 8: Plot of the solution obtained by Balluffi,
Allen and Carter [17] for equation (2), similar to the
one in Figure 7.

Other solutions through X5

More solutions follow from evaluating the limits
in (101) by following a different path, leading to

/c% (ln ¢) dn
2 {—(+a/i)(x/i))}

w2
(—sin(wz/i))* e Tt + 2isin (g—jt)

x cos(wx /i)| cos(wz/i)| (115)
so that
/di; (lngzlb) dnzZFQ(wzwiitz). (116
Hence,
u=F + e @R / " eiw;i:%dﬁ. (117)
m

3.2.4 Afirst couple of solutions throughXs

A simple pair of solutions results from (117)
whenw goes to zero requires. That is,

n2  _ z2
u:F1+F0/ e 2@*=1)dp (118
m
and
72 z2
w=F +F / T . (119)

m

3.2.5 A second couple of solutions througtX,

Settingn; = n andny = n + w in (117) and
letting w go to zero requires thaty = —A/w for
some constandl. This invokes L’hopital’s principle,
so that

2

u=F + Ae T (120

and
2

u=F + AT (121)
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3.2.6 A third couple of solutions through X» satisfying both (127) and empirical results, plotted in

o . Figure 13. The learly in the family of the fo
As was the case foX, the limits in Appendix B gur Se are clearly In the family e form

can be used to create more solutions. The following L
pair results: u = f(t,x)e 2=+ (129
A
u=F + —=e 27— 12
1+ (1229
and
A 22
u=F +—=e2@*—t3), 12
1+ (123
3.2.7 A fourth couple of solutions throughX,
Continuing with the argument started in the pr o | ’/kﬁ\/i:{o: ey
ceding section leads to the fourth couple of solutior / Ui °
/ :
A _ z2 T T, ‘i{l:’/ = :O ©
u = Fl -+ me 2(z2—t2) (124) o i 1 ¥
and
22 Figure 9: Plot of the solution obtained by Hancork
u=Fp 4 et (129 [18] for equation (2) for cases= 0, t ~ 0 andt >>

: , 0, all stacked onto the same sketch.
It is apparent from these calculations that thou

X, are largely of the family

2

u= f(t,ac)ejE 22, (126

4 Applications: Heat conduction in :
thin plates. :

As mentioned in the Introduction, there are many o )
methods used in practice to solve (2), an equation that Figure 10: Plot of the solution in (120) for equation
finds application in a number of different situations. (2), similar to the one in Figure 9 far= ¢, >> 0.

The backward heat equation

Upy = —Us, (227)

too, does arise in practice. Unfortunately, without an-
alytical solutions, one could end up applying one of
the two equations to a situation to which it does not
apply.

For example, in a study on heat conduction in thin
plates, Hancork [18] deduced solutions for (2) pre-
sented in Figure 9. These we unpack in Figures 10, Figure 11: Plot of the solution in (120) for equation
11 and 12 using (120). Unfortunately, practical results (2), similar to the one in Figure 9 far= t, ~ 0.
indicate itis (127) which is applicable to this situation.

This we deduce from the fact that impractical singu-

larities arise whem is plotted against when (120) is

used, but disappear when this expression assumes the5  Conclusion
form

wrooBil S
/_/JX

-0 -5 5 1o *

2 In this study, new symmetries were obtained for the
u=F + Ae 2°+t%) (128 heat equation, and two were used to determine group
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utt, x)

12

=)

N s o

X

-7.5 -5 -2.5 25 5 7.5

Figure 12: Plot of the solution in (120) for equation
(2), similar to the one in Figure 9 far= ¢y = 0.

=

BN W s O o N o

0.2 04 06 08 1°

Figure 13: The solid curve is from (128) for the back-
ward heat equation (127), while the other curves are
from (120) for the heat equation (2).

invariant solutions. It was shown they do not only lead
to solutions possible through old symmetries, but also
to new solutions, including the ones possible through
other methods.

APPENDIX A: Generalising Euler's formu-
las for solving second order ordinary differential
equations

It is well-known that Lie’s group theoretical
methods seek to reduce procedures for solving dif-
ferential equations of any challenging form to simple
ones that may also have the form

aoy + boy + coy = 0, (130)

for y = y(x), with parameters, by andcy. It is also
that accepted Euler’s formulas are suitable for solving

ISSN: 2074-1278 28
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T =10~

N

r=xg~0o0rl

. /

Figure 14: The temperature against time curve ob-
tained by Hancork, valid fot > 1/7%, comparable
to the solution in Figure 13.

such equations. They are:

bo

e %0 (Ae™¥" 4 Be®T),  bE > dagc,
A+ BI‘, b% = 4&000,
Y= -0y -
e 200" [Acos(Wx)]
b
—i—Be_%x[sin(dm)], b3 < dagcy
(131)
wherew = \/bg — 4a060/(2a0).

But there is a problem with this system: It does
not reduce tay = A + Bx whenby = ¢y = 0. This is
because Euler did not solve the equation to get the for-
mulas. There has never been a need to do so, primarily
because the formulas have been very successful in ap-
plications, and they still are.

The need for an exact solution here, is driven
by the desire understand solutions for equation (2)
through symmetry methods. It is impossible through
Euler’'s formulas. To get such exact formula, first let

y =Pz,
with § = (z) andz = z(z), so that
§ = Bz + B2,

and ) .

i = Bz + 28 + B3.
These transform (130) into
ag (ﬁz +28% + 5%) + by (ﬂz + 52) + ¢z = 0.
That is,

a052+(2a05' + boﬁ) z+(ao/§ T bof + co/a) 2= 0.
(132)
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Choosing3 to sdisfy 2a3+bo3 = 0 simplifies equa-
tion (132). That is,
oy
B = Cpoe 2",

for some constant’yy. Equation (132) assumes the
form . )
aof +boB + o3
— zZ.
aof

y <b3 - 4aoco>
i= | — )=
4ag

But Z can be written agdz/dz. Therefore,

P @ _ b% — 4CLQC() .
dz 4a3 ’

Tha is,

or ,
bg — 4
sdi = (075060> 2dz.
4aj
That is,
22 2 2
Z bg — 4apcy | 2
R e U YU NG
2 ( a2 p Tom

for some constant’y;. That s,

b(z) — 4&060 Z_2 4
4a(2) 2

dz

b2—4
(=) = 20

dz bg — 4dagpco
— = —T dx,
\/A(Z)O — 22 Qg

2_
with A2, = 2Cp; /,/— 2229 Henge,

3 =

or
= dx.

That is,

4ag
2C01
z g
b(2)—4aoco
4a0
b2 — daye
X sin ( —07200 T+ 002> (133)
dag
for some constanf’y;. That is,
—bo 2C
y = Cppe>o” >z
bg—4aoco
B 4a8
b2 —4
X sin < —075060 T+ C()Q) (134)
4ag
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Letting

_ b% — 4CLQC()

W=\———5

4ag
we have ,
0

y = Cope0 " 20% sin (w x + Cp2) ,
or )

—% .
y = Cye?™" 2Cy [Sm(w@ cos(wz) +

cos (Co2) W]
A reduction to the trivial casdj = 0 requires that
sin(Cpz2) = Cossin(w) andcos(Cpz) = Copg cos(@).
That is,C3; + C2, = 1. Hence,

b

y = Coe™" 20n [CossIn®) o5 () +
Coy cos (@) Sm(wf“x)]’
or simply
y = COOE%I 2Co; Co3 sin (@_) cos (w x)
w

L .
e 90y, SuSm @) ey
It is very vital to indicate that if the parametersin

the denominator aneln (i) are absorbed into the co-
efficientsCy; andCjys, then formula (135) would re-

duce to one of Euler’s formulas. But the consequences

would be fatal, as formula (135) would not reduce to
y = A+ Bx whenby = ¢g = 0, that is, whenwo = 0.

Unfortunately, this result cannot be found in any
university textbook.

APPENDIX B: Useful limit results
It is true that

lim {w} = E
u—0 M 2

This can be written in the form

in (Ex
hm{m_é}:o,

n—0 il 7

sin (&
n—0 il 7 ]

Renvoving the ‘lim’ for greater clarity:

or

= - cos
u i

7

().
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That is, with 1 = w*(w? — 1) in the case of (54) ang =
- (%) N gﬂcos <#7t) ’ (136) wt(w? + 1) for (85). That is,
1
or = 144
pt\  isin (—t) RV #) (149
€08 (7) i 4 for (54), and
We then have 1
“= (w? + 1)t w? ¢(n) (149)
COS (%t) COS (%t)
L =pu patl for (85).
Carying out the derivative on the right hand side:
References:

COS (%t)
pe
Sulbstituting (136):
COS (%t)
pe
Tha is,

t t t
4 COS <M—> = 1242 cos <M—) + cos (M—) , (137
1 1 1
which can be expressed in the form
t ) t
u2 cos (,u_t) — ,u3t2 CoSs (,u_) = zsin (,u_) .
1 7 t 7
(138
Sincesin (“Tt) = 0 for x small, it follows then that

t t
,u2 cos (,u_> = ,u3t2 Cos <,u_> .
] ]

Sinceet! ca be expressed in the fornas(ut/i) +
isin(ut/1), then

—p (%) sin (“Tt) + cos (“Tt) |

Iu‘l-i-l

[1]

2 ()% cos (£2) + cos (1) 2]

Iu‘l-i-l

[3]

[4]

[5]

(139 [6]

[7]

pett = 13t% cos ('u?t) , (140 [8]
so that
. [,ﬁ cos (“7'5)} Vi 141y (9]
or
e ht [,ﬁ cos (”Tt)r Vi, (142) 1)

Therefore (54) and (54) can then be written in the form [11]

é(n), (143)
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